skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gafni, Almog"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The ongoing global temperature rise enhances permafrost thaw in the Arctic, allowing Pleistocene‐aged frozen soil organic matter to become available for microbial degradation and production of greenhouse gases, particularly methane. Here, we examined the extent and mechanism of anaerobic oxidation of methane (AOM) in the sediments of four interior Alaska thermokarst lakes, which formed and continue to expand as a result of ice‐rich permafrost thaw. In cores of surface (~ 1 m) lake sediments we quantified methane production (methanogenesis) and AOM rates using anaerobic incubation experiments in low (4°C) and high (16°C) temperatures. Methanogenesis rates were measured by the accumulation of methane over ~ 90 d, whereas AOM rates were measured by adding labeled‐13CH4and measuring the produced dissolved inorganic13C. Our results demonstrate that while methanogenesis was vigorous in these anoxic sediments, AOM was lower by two orders of magnitude. In almost all sediment depths and temperatures, AOM rates remained less than 2% of the methanogenesis rates. Experimental evidence indicates that the AOM is strongly related to methanogens, as the addition of a methanogens' inhibitor prevented AOM. Variety of electron acceptor additions did not stimulate AOM, and methanotrophs were scarcely detected. These observations suggest that the AOM signals in the incubation experiments might be a result of enzymatic reversibility (“back‐flux”) during CH4production, rather than thermodynamically favorable AOM. Regardless of the mechanism, the quantitative results show that near surface (< 1‐m) thermokarst sediments in interior Alaska have little to no buffer mechanisms capable of attenuating methane production in a warming climate. 
    more » « less